Exercise 1.89

A $25.0-\mathrm{cm}$ long cylindrical glass tube, sealed at one end, is filled with ethanol. The mass of ethanol needed to fill the tube is found to be 45.23 g . The density of ethanol is $0.789 \mathrm{~g} / \mathrm{mL}$. Calculate the inner diameter of the tube in centimeters.

Solution

The density ρ is mass m divided by volume V.

$$
\rho=\frac{m}{V}
$$

The volume of a cylinder is $\pi r^{2} h$.

$$
\rho=\frac{m}{\pi r^{2} h}
$$

The radius is half the diameter.

$$
\rho=\frac{m}{\pi\left(\frac{d}{2}\right)^{2} h}=\frac{m}{\pi\left(\frac{d^{2}}{4}\right) h}=\frac{4 m}{\pi d^{2} h}
$$

Solve for d.

$$
\begin{aligned}
d^{2} & =\frac{4 m}{\pi \rho h} \\
d & =\sqrt{\frac{4 m}{\pi \rho h}} \\
& =\sqrt{\frac{4(45.23 \mathrm{~g})}{\pi\left(0.789 \frac{\phi}{\mathrm{~mL}} \times \frac{1 \mathrm{~mL}}{1 \mathrm{~cm}^{3}}\right)(25.0 \mathrm{~cm})}} \\
& \approx 1.71 \mathrm{~cm}
\end{aligned}
$$

